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Abstract This paper proposes a method of 
appl ing the idea of multiresolution to the 
probyem of fault-tolerant integration of abstract 
sensor estimates when the number of sensors is 
very lar e and a large number of sensor faults are 
tame. &e give an optimal O(N1ogN) algorithm, 
where N is the total number yf sensors, which 
implements this idea efficiently. 
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I. INTRODUCTION 
The distributed sensor processing problem, in the context 

of distributed sensor networks, involves the problem of fault- 
tolerant integration of information from multiple sensors. 
Techniques of fault-tolerant sensor integration have to be 
robust in the sense that even if some of the sensors are 
faulty, the integrated output should still be reliable. 

We have proposed in this paper a new method of sensor 
integration using techniques of multiresolution 
decomposition. Multiresolution decomposition is an image 
decomposition in frequency channels of constant bandwidth 
on a logarithmic scale. Multiresolution transforms have been 
the focus of extensive study after the work on multiscale edge 
detection by Rosenfeld and Thurston[l]. The details of an 
image characterize different types of physical features at 
different scales. While at a coarse resolution one can 
distinguish the gross shapes of the large objects in an image, 
the exact contours, textures, and smaller details can be 
discerned at successively finer resolutions. Multiresolution 
representations offer a simple hierarchical framework for 
interpreting image information. The approximation of a 
signal f at a resolution r is defined as an estimate off derived 
by uniformly sampling f ,  r times per unit length. Tanimoto 
and Pavlidis[2] have developed efficient algorithms to 
compute the approximation of a function at different 
resolutions. 

In this paper, we propose a method of applying the idea of 
multiresolution to the problem of fault-tolerant integration of 
abstract sensor estimates when the number of sensors is very 
large, and a large number of sensor faults are tame. The idea 
essentially consists of constructing a simple function from 
the outputs of sensors in a cluster and resolving this function 
at various successively finer scales to isolate the region over 
which the correct sensors lie. We give an optimal algorithm 
which implements this idea efficiently. 

A Distributed Sensor Network consists of spatially 
distributed sensors that detect and quantify a certain 
phenomenon via its changing parameters. The readings of 
sensors are sent at regular intervals of time to processing 
units that integrate these readings and give outputs whose 
nature is much the same as the inputs of the sensors. Output 
from processors representing clusters of sensors are later 
integrated to get a complete picture of the spatially distributed 
phenomenon. However, before integration is performed at 
the processor level, it is necessary to have reliable estimates 
at each processor. Each sensor in a cluster measures the same 
parameter. It is possible that some of these sensors are 
faulty. Hence it is desirable to make use of this redundancy 
of the readings in the cluster to obtain a correct estimate of 
the parameters being read. In short, a fault-tolerant technique 
of sensor integration to obtain the correct estimate is sought. 
Manullo[3] has addressed the problem of fault-tolerant 
integration of abstract interval estimates and has generalized 
his estimates to multidimensional sensors[4]. 

In order to obtain a method of fault-tolerant sensor 
integration for dynamic real-time applications, we analyze a 
function called the Overlap function introduced in [5], using 
the techniques of multiresolution decomposition. This 
approach will be sketched for abstract interval estimates for 
the sake of clarity. However, the proposed methodology 
generalizes easily and fruitfully to higher dimensional sensor 
outputs. 

We recapitulate some of the definitions and notations of an 
earlier paper[5] that are relevant here: 

Definition 1: An Abstract Sensor is a sensor that reads a 
physical parameter and gives out an abstract interval-estimate 
I,  which is a bounded and connected subset of the real line R. 

Definition 2: A Correct Sensor is an abstract sensor where 
the interval estimate contains the actual value of the 
parameter being measured. If the interval estimate does not 
contain the actual value of the parameter being measured, it is 
called a Faulty sensor. 

Definition 3: Let sensors SI, ... , S,, feed into a processor 
P. Let the abstract interval estimate of Si be Ii; ( lS jSn) ,  the 

closed interval [ui,bl] with endpoints ut and b,. Define the 

Characteristic Function x, o f  the jth sensor Sj,  K j  9 1  as 
follows: 
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Definition 4 :  Let O(x) = x:, x i (%)  be the "overlap 

function" of the n abstract sensors. For each x ;R, O(x) 
gives the number of sensor intervals in which x lies, or, the 
number of intervals overlapping at the point x. 

Definition 5: A sensor is tamely faulty if it is a faulty 
sensor and if it overlaps with a correct sensor. 
A. Some comments on tame faults and previous work 

Iff among n sensors are faulty, then by taking (n -f) 
intersections of the n sensors' interval estimates we are 
assured that the correct value of the parameter lies in one of 
these (n -f) intersections. When the number of sensors is 
large and the number of faults cannot be strictly bounded, the 
(n -j) intersections may tend to be scattered wildly over the 
real line, giving poor output estimates. In order to improve 
the output estimate in these cases, we must be able to further 
evaluate the (n -j) intersections to choose the "best possible" 
intersection which contains the correct value with high 
reliability. 

In the method proposed here we assume as before that the 
number of sensors is very large, that most faults are tame, 
and we assume no bound on the number of faults. In fact, we 
let the number of faults vary with the sampling of the 
sensors' readings. 

As the sensors are sampled synchronously at various time 
intervals, we order the sensors a priori by labeling them, 
dynamically maintain their overlap function O(x), and analyze 
it at various scales to obtain successively smaller regions 
which contain the correct value of the parameter observed. 

In our earlier papers ( [ 5 ]  and [6) we evaluated each 
(n-f)intersection by adding up the popularities of all the 
intervals participating in that (n-f) intersection and using 
this as the measure of that (n-f)  intersection. The 
popularity of each interval estimate is the number of intervals 
overlapping with it. The rationale behind this evaluation 
rests upon the observation that the tamely faulty sensors 
would lie close to the correct value, thereby overlapping with 
the correct sensors of an ( i - f )  intersection, contributing to 
its reliability. Wild faults would, on the other hand, be 
uncorrelated to any value on the real line and therefore would 
spread randomly on the real line and contribute to "noise," 
and form smaller, less prominent clusters. 

The computation of the reliabilities of the (n-f) 
intersections is computationally arduous and limits real-time 
applications. However, the pattern of scattering of tamely 
faulty intervals can be observed by studying the overlap 
function O(x) at different scales. Regions where O(x) is 
maximal are of interest, since these are contained in (n-f)  
intersections for every f .  Hence the correct value lies in these 
regions with very high probability. However there may be 
several spatially separated maximal intersections, some of 
them caused by intersections of wildly faulty sensors. In this 
case we have to look into the spreads of the crests containing 
maximal intersections. A large spread indicates heavy 
clustering of sensors, pointing to tame faults, and hence 
probably the "correct" maximal intersection. However this 
analysis of simultaneously selecting crests with large 
amplitudes and wide spreads cannot be performed on O(x)  

directly. O(x) has features over several scales. We observe 
O(x) from a coarse scale and select a crest with largest 
amplitude and widest spread. We then "zoom-in" on this 
crest by increasing the resolution of observation and again 
perform a selection based on largest amplitude and widest 
spread. This operation is performed over a series of scales, 
from coarse to fine, resulting in the isolation of a small 
connected region of the real line over which O(x) takes the 
highest values. 

111. MAIN IDEA 

Given a sequence of increasing resolutions {rilieZ the 
details of a functionflx) at the resolution rj are defined as the 
difference of information between the approximation offTx) at 
the resolution rj+ and the approximation at the resolution rj . 

At a coarse resolution the image &tails are characterized by 
very few samples. Hence, the coarse information processing 
can be performed quickly. The finer details are characterized 
by more samples, but the prior information derived from the 
context, construction and thus speeds up the computation. 
With a coarse-to-fine strategy, a minimum amount of details 
necessary to perform a recognition task is processed. 

Starting at the coarsest resolution, we select those crests 
with the highest peaks and choose from these crests the one 
with the widest spread. At the next highest resolution this 
crest is again inspected for crests within it with highest 
amplitudes and among these crests the one with the widest 
spread is retained for finer analysis at the next resolution. 
This procedure results in isolating those regions of the real 
line over which O(x) has a maximum value, corresponding to 
high overlap degree. By our model this indicates that the 
isolated region has high probability of containing the correct 
value of the parameters observed. A diagrammatic 
demonstration of this procedure is illustrated in Fig's 1 to 5,  
where O(x) in Fig. 1 is processed using multiresolution 
decomposition at dyadic scales of resolution. The advantage 
of this procedure is significant from the point of view of 
computational speeds, for the coarse-to-fine processing leads 
to elimination of large regions of the support of O(x) at each 
resolution. We rigorously formulate this heuristic in order to 
obtain a real time algorithm which dynamically maintains 
O(x) and obtains the narrowed output estimate. The 
maintenance of O(x) requires O(n1ogn) time where n is the 
number of sensors. 

IV. ESTIMATES ON SENSOR CLUSTERS 
In our model of abstract sensors we assume that i) A large 

number of sensor faults are tame, and that ii) the length of 
each interval estimate is bounded below by 1 and above by L,  
where 1 4 .  and I ,  L are positive real numbers. (Indeed, a very 
large interval estimate is too inaccurate to be of any value 
hence may be discarded. On the other hand, a very small 
interval estimate would not be amenable for fault-tolerance 
analysis. A minimum tolerance of +1/2 is built into the 
abstract sensors, and so we may assume that the width of 
each interval is at least I). These two assumptions imply 
that the tame faults cluster in a bounded neighborhood of the 
correct value of the measured parameter. When the number of 
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faulty sensors are significant, since most faults are tame, this 
results in overlaps of the faulty -sensors amongst themselves 
and boosts the value of 0(x) in the neighborhood of the 
correct value of the parameter, thus reinforcing the ( ~ - f )  
intersection containing the correct value. 

Indeed, let T be the number of tamely faulty sensors. 
These may range in width fr?m 1 to L. A tamely faulty 
sensor must intersect with a correct sensor. Therefore its 
endpoint nearest to the correct value c must lie within a 
distance of almost L from c.  Thus at most 
(I + LL I 11) tamely faulty sensors can be accommodated in 
either side of c with no two of them overlapping. i.e., at least 
[T I 2 (1 + LL I I J)1 tamely faulty sensors overlap over a 
region of width at least 1 within a distance of at most 2L 
from c. 

When the number of intersections of tamely faulty sensors 
is [T I 2 (1 + LL I zJ)1 , the width of this intersection is 
actually at least 2(1+L). When the number of intersections is 
T then this results in a peak with spread of at least 1. This 
clustering reinforces the width and height of the ‘correct’ 
( ~ - f )  intersection by adding in its neighborhood a peak of 
area T1 at least. In general this results in a taller and wider 
peak in the neighborhood of c. The widely faulty sensors are 
on the other hand random in their location on the real line and 
being uncorrelated, tend not to cluster around in any restricted 
neighborhood. Thus the (wf) intersections resulting from 
them have shorter and narrower peaks representing them in 
0(x). We use multiresolution to isolate the robust peaks in 
0(x) by looking at 0(x) at a coarse resolution, and then refine 
0(x) over the regions over which the robust peaks occur by 
successive finer resolutions and at each stage reduce the 
region to finally obtain a narrowed interval in which c is 
most likely contained. We develop the method in sections to 
follow. 

V. MULTIRESOLUTION OF THE OVERLAP FUNCTION 
If Si (1 I i I N) are N abstract sensors with their interval 

estimates [a;, b;] (1 I i I N) having characteristic function ci 
(1 I i I N) then the overlap function 0(x) of these N sensors 
is given by 

N 

ow = C X i W  
i=l  

For each j ,  0(x) can be sampled at regular intervals 1/$ to 
obtain the j-th resolution of 0(x) at scale l/p as a linear 
combination of a set of functions obtained by scaling and 
translating a single function: 

Let a(x) = . Consider the functions 

m 
( a ( 2 ’ x  - n)>,=-_, j E Z . Explicitly, we have that 

Thejth resolution of O(x) with respect to the system 

{ o ( 2 ’ x  - n)}” is given by: n=-m 
m 

o’(x) = x O ( n 2 - ’ ) 0 ( 2 ’ x  - n) 
n=-m 

Since O(x) has compact support, the above summation is 

actually over finitely many n. Indeed, if a = 19iSn min{a;) and 

r 2 i b l  

b = min{bi), then O’(x) = ’ x b ( n 2 - ’ ) 0 ( 2 ’ x  - n). 
1SiSn p.1 

Thus O’(x)  is obtained from O(x) by sampling at the 

points {n2-’ lm n=-m lying between a and b. O’(x)is a 

function whose features are of ‘size’ 2-’ or greater. To study 
the effect of sampling on this function’s representation at any 
given resolution, it is sufficient to consider the effect of - 

othenvise ’ sampling on the test function g(x)  = 

where [a,P] is an arbitrary closed interval. 
rz is l  

g j ( x )  = I r r l  - c - ~ ( ~ ~ - I ) ~ ( ~ J ~  - n)is a function which takes 

I 21a I 
the constant value 1 over a semi-closed interval. There are 
two things which may happen independently to the support 
of g ’ ( x )  depending upon the incidence of the sampling 
points: i) It may be shorter on the left by a length of at most 
2-I than [alp] ii) It may be longer on the right by a length 
of at most 2-’ than [ a,a]. 

We will see later that we have to correct for a positive 
shrinkage of the support of a feature, so as not to lose any 
information (correct value of the parameter measured). This 
is done, by resolving over a region bigger than the one at hand 
by 1/2/ on the left. The extension (‘Smearing’) of support 
will decrease with further resolution, and does not pose a 
problem. 

While considering resolutions of O(x), we have to choose 
the scale appropriately. Too large a scale will provide no 
useful information about the structure of 0, while too small 
a scale would not isolate the features important to us, by 
bringing in unnecessary detail. And since each sensor has 
width at least I, it is desirable to start off with a scale smaller 
than 1 (or the same order as I )  i.e., choosej = Iog l / l .  Thus 
each sensor will figure as a feature at least as big as l/p. 

The fluctuations in O(x) occur at the points a;, bi (1 < i 5 
N) which are the end points of the interval estimates. If a is 
the least of the ai and b is the largest of the b, ,  then the 
average number of fluctuations per unit length is given by 
2N/(b-a). So in order to capture all the fluctuations we would 
have to resolve at least to a level j > log (2N/(b-a)). 
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VI. SELECTION OF ROBUST PEAKS 

At the j-th level of resolution 0’ can be looked upon as a 
series of juxtaposed peaks. In other words, consider the 
sequence { 0 ( n / 2 ’ ) } .  This sequence is a concatenation of 
several bitonic sequence, each of which increases first and 
then decreases--(a bitonic sequence is a sequence of numbers 
ao, ... , with the property that ( 1 )  there exists an index i, 
0 I i I n-1,  such that a. through ai is monotonically 
increasing and ai through is monotonically decreasing or 
else (2)  there exists a cyclic shift so that the first condition is 
satisfied. 

For more details see Michael J. Quinnl19871 “Designing 
Efficient Algorithm for Parallel Computers,” McGraw-Hill 
publication.) Each bitonic sequence which increases first and 
then decreases corresponds to a peak in 0’. We wish to 
isolate those peaks which are the tallest and have the widest 
spread, for it is in the region over which these peaks lie that 
the correct value of the parameter being measured is most 
likely to be found. Since the characteristic function of each 
sensor adds an area numerically equal to the sensor’s width to 
the area under 0 ( x ) ,  a g o o d  measure of the peaks’ robustness 
is the area under them. 

At the j-th resolution consider the sequence { 0(n/2’)In. 
This is a finite sequence since the support of 0 is finite. Let 
there be p peaks (or p bitonic sequences that increase first a 
then decrease) in 0’. Thus the sequence (O(n /2 j ) }  can be 
rewritten 

. . .DO@‘), ... , ~ ( ( n ~ - ~ + l ) / P ) ,  ... ,o(~J!)I, 
where the subsequence (O((n,-,+li)z‘), ... ,0(nk/2’)} is the 

k-th bitonic sequence from the left. Therefore the area under 
this peak is given by 

{ 0 ( n , / 2 / ) ,  0 ( ( q ) + l ) / 2 j )  ,;.. 7 0 ( n 1 / 2 5  0 ( ( t 1 1 + 1 ) / 2 ; ) ,  

” k 
1 / 2j  E O ( n  / 2 ’ )  

n=nk-, 

Since the factor l@ is common to the areas of all peaks at 
the j-th resolution. We may make the area ‘scale-free’ by 
dropping this factor and writing the area of the k-th peak at 
level j as 

A i ( k )  = zO(rr / 2 ’ )  
n = n k - l  

nk 

We then select the peaks with largest area and ignore the 
other peaks. The function 0 is further resolved over the 
regions over which these largest peaks occur, and the process 
is repeated until a satisfactory region of the real line is 
isolated as the most llkely candidate for containing the correct 
value of the parameter being measured by the sensors. 
However, before resolving a certain selected peak further, we 
correct the region over which the resolution is to be carried 
out by adding a segment of length Up. Fig’s 1 through 5 
show the property of coarse grain to fine grain scheme for 
isolating robust peaks. 

Indeed if at the j - th  resolution the k-th peak is selected as 
the peak with the largest area under it. then the region over 

which the. resolution of 0 ( n )  is performed again is 
[(nk-1+1)/2’, nk/2‘] with a correction of length 1/2‘ to the left. 

Therefore ~ ( x )  is resolved over [nk-1/2’, nk/2’]. The 
process of resolving and selecting peaks with largest area is 
continued until the width over which further resolution is to 
be carried out is smaller than the maximum acceptable width 
for the integrated output estimate, or when further resolution 
does not reduce the region selected from the previous 
resolution. The final corrected region with the largest value 
of 0 over it is accepted as the output estimate. We will now 
discuss the algorithmic aspect this procedure below. 

VII. THE ALGORITHM 
In this section, we give an algorithm which implements 

our analytical method. 
1- The end points ai, bi of the interval estimate [ai, bi] of 
the sensors Si, “ 1 I i I N .  The lower and upper bounds of 
resolution jo a n d  jl ( jo = l o g ( l / l )  and 
j l >  log(2N/supp(O(x))) . 
begin 

1. 

2 .  

3. 

Form the array of ordered pairs: [ ( a l ,  l ) ,  (bl , - l ) ,  
(9. 11, (b2,-1), 0 . .  9 (a,, 11,  @,*-1)1. 
Sort this array in increasing order with respect to the 
first components of the ordered pairs to obtain the 
array [(a,, ol), (a2, q), ... , (%. o,)I, where each 
a, is some aj or bj, ai I a,+, 1 I i I 2N, and 

1 if a, is an a’ 

P = {  -1 if a, is a b ,  

Construct the array [(--,O), (al,ol), ... , 
i 2N 

C 0, C 0, 
(ai, i=1 
overlap function 0 ( x ) .  

), ... , (a2,, j=1 ), ( - , o ) ]  representing the 

2N i 

(note that o1 = +1, COj = 0, and C‘j ai I 
il ’4 

x I ai+,, 0 I i I 2N where a. = -- and 

while j, I j < jl do 
RESOLVEU; ~ j - 1 ,  )1’ j - l ]  

j : = j +  1 
end while 
Sample 0 ( x )  between izh / 2’’ and n’ ’, /2h to obtain 

0“ (X I :  the approximation of 0 ( x )  at the j, t h  
resolution. Choose that subinterval of [nj, / 2”, 

ti /2h ]  over which 0‘’ (X) attains a maximum (or 
takes values greater than a specified value) and accept 
this subinterval as the integrated output estimate of 
the N sensor estimates. 

end. 
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1..;..j ~. ....... j j . .. i . _.__,. j ; . j ' _.______,.__._.,.__...._. : j j , .,_....___.._ ; j j j d~~..i..:..i..i..~...i .... j 

"- 
0 4 0 1 2  1 6  20 24  2 8  3 2  36  40 4 4  48 5 2  5 6  60 64 

Fig 1: O(x), the shaded region indicates the portion which is to be resolved over. 

Fig 2: 0-3 (XI, the shaded region and the region of width 8 to its left are to be resolved over. 

. . .  . .  . 

Fig 3: 0-2 (x), the shaded region and the region of width 4 to its left are to be resolved over. 

0 4 8 12  16  2 0  24 2 8  32  3 9  40 4 4  4 8  5 2  5 6  60 64 

Fig 4: 0.' (XI, the shaded region and the region of width 2 to its left are to be resolved over. 

Fig 5: Oo(x), the shaded region and the region of width 1 to its left are to be resolved over. We 
may at this point terminate resolution and choose the interval over which this peak attains a 
maximum. 
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The subroutine RESOLVE (below) which resolves 0 ( x )  to 
obtain an approximation of 0 with thej-th resolution over a 
given interval is given below. It yields the indices of two 
points at thej-th resolution, over which the largest or most 
prominent peak at thej-th resolution occurs. 

RESOLVEU; nj-1, n'jl] 
begin 

1. 

2. 

end. 

Fig's 

Resolve O ( x )  at scale 2" over the interval 
[(nbl -1)/2'-', dj7, DF1] by sampling O(x) at 
the points (2nj.1 - 2)/2-', (2nj.1 - I)/P, ... ,2n;,/2 to 
obtain U'@): the approximation of 0 ( x )  at thej-th 
resolution, represented by the array [(-, 0), ... , (n/p, 

kn 

C'j), ... , (w, O)] 
j=l 

(2nj-1 - 2 In I 2 n ) - l )  and 

s, 

(X) = 0; " n/y I x I (n+l)/y, where (n/2j - 
j =1 

a k n )  < 1/2'. 
Choose nj and n),  where n j  c n) and 2nj-1 - 2 I nj  I 

2n'j-l such that { 0 ( ~ ] ) r  . is a contiguous 
n=n.  1 

bitonic subsequence of { O( Kj)rn'-' which 
n=2nj-,  -2 

first increases and then decreases, and which has the 

largest sum. i.e., 2 0(gj) is maximum of all 
n=n.  1 

such bitonic subsequences' sum. 

1 to 5 depict the implementation of this algorithm 
graphically. 
Complexity of the Algorithm 

The subroutine RESOLVE involves only scanning and 
hence is linear in the number of sensors N.  Since the average 
density of fluctuation in 0 is 2N/Supp(O(x)), the level of 
resolution j required to capture almost all the measures of 0 
is given by j > log(2N/Supp(O(x))).  

If we assume that the parameter being measured by the 
sensors is known to lie between certain bounds, then j > 
log N + C where C is some constant. Thus the subroutine 
RESOLVE will be called on an average O(logN)  times. 
Hence the average complexity of the algorithm is O(NlogN). 

CONCLUDING REMARKS 
In this paper we have applied a novel technique to process 

the inputs of several sensors to obtain an accurate and fault- 
tolerant interval estimate as the integrated output. The idea 
behind this application is the recognition and isolation of the 

most prominent and robust peaks in a region and the 
consequent elimination of narrower and less prominent peaks 
as 'errors.' This application of multiresolution can indeed be 
used elsewhere to recognize the important characteristics of a 
signal and overlook 'noise' factors in a computationally 
efficient manner. This method can be generalized with some 
modifications to multidimensional sensors and signals. The 
above method and algorithm can be reformulated using Haar 
wavelets and the fast wavelet algorithm also. 
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